Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles.
نویسندگان
چکیده
Polymorphonuclear leukocyte (PMN)-derived microparticles display inhibitory properties on target cells as assessed in vitro; since PMNs contain abundant amounts of the endogenous anti-inflammatory protein annexin 1 (AnxA1), we tested here whether biologically active AnxA1 could be present in PMN-derived microparticles. PMN adhesion to human umbilical vein endothelial cell (HUVEC) monolayers led to the generation of microparticles that contained AnxA1, as detected by Western blotting, flow cytometry, and mass spectrometry analyses. Addition of these microparticles to recipient PMNs prior to flow over HUVEC monolayers significantly inhibited cell adhesion, an effect abrogated by a neutralizing anti-AnxA1 antibody, or an antibody raised against the AnxA1 receptor, that is termed lipoxin A(4) receptor or ALX. Intravenous delivery of human PMN-derived microparticles markedly inhibited PMN recruitment to an air pouch inflamed with IL-1beta. This anti-inflammatory effect was also dependent on endogenous AnxA1, since injection of microparticles produced from wild-type PMNs (bone marrow derived), but not from AnxA1-null PMNs, inhibited IL-1beta-induced leukocyte trafficking. In conclusion, PMN-derived microparticles contain functionally active AnxA1 that confers them anti-inflammatory properties; generation of these microparticles in the microcirculation could promote inflammatory resolution by time-dependent dampening of cell recruitment.
منابع مشابه
Annexin-1 is an endogenous gastroprotective factor against indomethacin-induced damage.
Adherence of neutrophils to the vascular endothelium is an early and critical event in the pathogenesis of gastric injury induced by NSAIDs. Pretreatment with glucocorticoids has been shown to prevent NSAID-induced neutrophil adherence and, in turn, to protect the stomach from injury. Some of the anti-inflammatory effects of glucocorticoids, including inhibition of neutrophil adherence, are med...
متن کاملMicroparticles Mediate Hepatic Ischemia-Reperfusion Injury and Are the Targets of Diannexin (ASP8597)
BACKGROUND & AIMS Ischemia-reperfusion injury (IRI) can cause hepatic failure after liver surgery or transplantation. IRI causes oxidative stress, which injures sinusoidal endothelial cells (SECs), leading to recruitment and activation of Kupffer cells, platelets and microcirculatory impairment. We investigated whether injured SECs and other cell types release microparticles during post-ischemi...
متن کاملAnnexin 1 and neutrophil apoptosis.
ANXA1 (annexin 1), a member of the 'annexin' family of calcium- and phospholipid-binding proteins, was originally identified as an endogenous mediator of the anti-inflammatory actions of glucocorticoids. However, this protein exerts multiple inhibitory effects on the host inflammatory response, including a preferential regulation of the adhesion step of blood-borne neutrophil within the microen...
متن کاملActivated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis.
On activation, human neutrophils release microparticles, called ectosomes, directly from the cell surface membrane. Microparticles from platelets, endothelial cells, and monocytes were reported to support coagulation or to modulate vascular homeostasis by activating monocytes as well as endothelial cells. We find that neutrophil ectosomes have no proinflammatory activity on human macrophages as...
متن کاملHeterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*
Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 112 6 شماره
صفحات -
تاریخ انتشار 2008